Disruption of the Rev3l-encoded catalytic subunit of polymerase ζ in mice results in early embryonic lethality
نویسندگان
چکیده
Polymerase zeta (Pol zeta) is an error-prone DNA polymerase [1], which in yeast is involved in trans-lesion synthesis (TLS) and is responsible for most of the ultraviolet (UV) radiation-induced and spontaneous mutagenesis [2-4]. Pol zeta consists of three subunits: REV1, a deoxycytidyl-transferase [5]; REV7, of unclear function [6]; and REV3, the catalytic subunit. REV3 alone is sufficient to carry out TLS, but association with REV1 and REV7 enhances its activity [5, 7]. Experiments using human cells treated with UV radiation indicate also that mammalian Pol zeta is involved in TLS [7]. The peculiar mutagenic activity of Pol zeta [4,7,8] suggests a possible role in somatic hypermutation of immunoglobulin (Ig) genes [9]. Here, we report that, unlike in yeast where the REV3 gene is not essential for life [4], disruption of the mouse homologue (Rev3l) resulted in early embryonic lethality. In Rev3l(-/-) embryos, no haematopoietic cells other than erythrocytes could be identified in the yolk sac. Rev3l(-/-) haematopoietic precursors were unable to expand in vitro and no haematopoietic cells could be derived from the intraembryonic haematogenic compartment (splanchnopleura). Fibroblasts could not be derived from the Rev3l(-/-) embryos, and Rev3l(-/-) embryonic stem (ES) cells could not be obtained. This is the first evidence that an enzyme involved in TLS is critical for mammalian development.
منابع مشابه
The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.
DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves...
متن کاملDisruption of the developmentally regulated Rev3l gene causes embryonic lethality
The REV3 gene encodes the catalytic subunit of DNA polymerase (pol) zeta, which can replicate past certain types of DNA lesions [1]. Saccharomyces cerevisiae rev3 mutants are viable and have lower rates of spontaneous and DNA-damage-induced mutagenesis [2]. Reduction in the level of Rev31, the presumed catalytic subunit of mammalian pol zeta, decreased damage-induced mutagenesis in human cell l...
متن کاملREV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ
DNA polymerase zeta (pol ζ) is exceptionally important for controlling mutagenesis and genetic instability. REV3L comprises the catalytic subunit, while REV7 (MAD2L2) is considered an accessory subunit. However, it has not been established that the role of REV7 in DNA damage tolerance is necessarily connected with mammalian pol ζ, and there is accumulating evidence that REV7 and REV3L have inde...
متن کاملLoss of DNA Polymerase Z Causes Chromosomal Instability in Mammalian Cells
Rev3L encodes the catalytic subunit of DNA polymerase Z (pol Z) in mammalian cells. In yeast, pol Z helps cells bypass sites of DNA damage that can block replication enzymes. Targeted disruption of the mouse Rev3L gene causes lethality midway through embryonic gestation, and Rev3L / mouse embryonic fibroblasts (MEFs) remain in a quiescent state in culture. This suggests that pol Z may be necess...
متن کاملLoss of DNA polymerase zeta causes chromosomal instability in mammalian cells.
Rev3L encodes the catalytic subunit of DNA polymerase zeta (pol zeta) in mammalian cells. In yeast, pol zeta helps cells bypass sites of DNA damage that can block replication enzymes. Targeted disruption of the mouse Rev3L gene causes lethality midway through embryonic gestation, and Rev3L-/- mouse embryonic fibroblasts (MEFs) remain in a quiescent state in culture. This suggests that pol zeta ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 10 شماره
صفحات -
تاریخ انتشار 2000